Maryland Power Plant Research Program

Presentation to the Lake Levels
Subcommittee – March 12, 2014
Youghiogheny River Temperature
Enhancement Releases

History of Youghiogheny River Temperature Enhancement

- Yough River temperature model
- Development of temperature enhancement protocol
- ➤ Performance of TER's
 - -Exceedances
 - 'unnecessary' releases
- Potential Improvements

Yough Temperature Model

- Permit 16: Requires temperature enhancement releases to "maintain water temperatures in the river between the project tailrace and Sang Run below 25 °C at all times during the months of June, July and August"
- Goals: develop a physical temperature simulation model of river
- Evaluate various release scenarios to maintain river temps below 25 °C
- Simulations included several types of generation releases and continuous minimum flow releases
- Temperatures collected at several stations to calibrate the model

Figure 7. YOUGH-RIV1 model simulations of temperature at Sang Run for July 22-23, 1987, for various minimum flow releases, with an upstream baseflow of 37 cfs.

Figure 8. YOUGH-RIV1 model simulations of temperature at Sang Run for July 22-23, 1987, with an upstream baseflow of 1.0 m3/sec (37 cfs) and a tailrace flow of 0.2 m3/sec (7 cfs), alone and in combination with generation flows of 1 or 2 hours each day.

Figure 9. YOUGH-RIV1 model simulations of temperature at Sang Run for July 22-23, 1987, with an upstream baseflow of 1.0 m3/sec (37 cfs) and a tailrace flow of 1.1 m3/sec (40 cfs), alone and in combination with generation flows of 1 or 2 hours each day.

Youghiogheny River Model simulation results – Test period July 23, 1987, 37 cfs river baseflow	Temperature °C at Sang Run bridge									
Simulation										
Tailrace Flow	Maximum	Average								
LOW FLOW SUPPLEMENTS										
1 cfs only	29.3	25.2								
7 cfs only	29.2	24.8								
add 40 cfs	27.4	22.1								
add 70 cfs 0700-1700 ST	26.1	22.4								
add 100 cfs 0700-1700 ST	24.9	21.4								
GENERATION FLOW - 7 cfs during non-generation										
630 cfs 1000-1100 ST	25.8	23.4								
630 cfs 1000-1200 ST	25.3	22.3								
GENERATION FLOW - 40 cfs during non-generation										
630 cfs 1000-1100 ST	25.2	21.1								
630 cfs 1000-1200 ST	24.1	20.5								

Test release – 1 turbine@200 cfs at 0900, 1100, 1300, 1500 for 1 hour

Test release – 1 turbine@315 cfs at 1100, 1300, 1500, 1700 for 1 hour

Test release – 2 turbines@full gate at 1100 for 2 hours

Test release – 2 turbines@full gate at 1200 for 2 hours

Temperature Enhancement

- Model results and test releases showed that temperature goal could be met on warm days with:
 - 100 cfs continuous for 10 hours starting at 0700 or
 - 2 hour generation release starting at 1100
- ➤ 100 cfs option would require costly bypass structure without generation
- Generation release option would produce power and is potentially boatable

Temperature Enhancement Protocol Goals

- ➤ Use a 2-hour generation release on the warmest days
- Use a 1-hour generation release on moderate days
- ➤ Provide a river temperature prediction mechanism for releases so several hour's notice of the 2-hour releases could be provided for boaters

Temperature Enhancement Protocol

- Developed using regression analysis of river temperatures, river flow, and maximum air temperature and cloud cover predictions
- Predictions made at 7, 9, and 11 am for 2-hour release for warmest days
- Predictions made at 12, 2, and 3 pm for 1-hour release on moderate days
- > 7 and 9am predictions make a release at 11am
- ➤ 11 am prediction makes release at 1230pm for more notice to boaters

Temperature Enhancement Results 1995-2013

- Average of 16 releases per year
- Exceedances at Sang Run occur on average 12/yr (vs. 27 days > 25 °C at Swallow Falls)
- ▶ 64% of exceedances < 26 °C</p>
- > 90% reduction of time > 25 °C vs. Swallow Falls (2004-2013)
- ➤ 1.5 'Unnecessary' releases occur per year, on average,< 3 hours per year (< than 1/2 inch of lake level)
- Natural river temperature variability is 0.7 °C ± 1.5 °C between Swallow Falls and Sang Run, on days with no releases

Estimate o	of 'unneces	sary' relea	ses from D	eep Creek	Hydroeled	tric Statio	n for temp	erature habita	nt enhancem	ent, 1995-20	12 (18 year	s)
				-					Operator			
			Power	Swallow	Deep				or			
		Sang	Co. Max,	Falls	Creek	Duration,	Total for	Protocol	Equipment			
Year	Date	Max, C	С	Max, C	Max, C	hrs	Year	Uncertainty	Error			
1995	7/5/1995	23.2		24.6		2	1	1				
1996	7/7/1996	22.5	22.0	24.4		2	1	1				
2000	6/25/2000	24.0	23.0	24.0		2		1				
2000	6/26/2000	22.0	21.5	25.0		2		1				
2000	7/4/2000	22.0	22.9	23.0		2		1				
2000	8/10/2000	24.0	24.1	24.0		2	4	1				
2003	8/26/2003	22.5	22.4		24.3	2	1	1				
2004	7/22/2004	21.1	20.6	24.4	23.4	2	1	1				
2005	8/25/2005	21.6	21.2	24.3	23.4	2	1	1				
2006	6/17/2006	24.8	23.9	24.3	23.5	2		1				
2006	6/18/2006	23.1	21.9	25.0	24.2	2		1				
2006	7/25/2006	24.5	24.2	24.8	24.1	2	3	1				
2007	6/13/2007	24.6	24.4	24.5	23.5	1	1	1				
2008	7/16/2008	24.0	24.0	24.1	23.7	2		1				
2009	7/26/2009	22.6	28.4	23.4	22.4	1			1	error in Brookfield sensor		sor
2009	8/11/2009	23.0	23.5	25.0	24.2	1		1				
2009	8/27/2009	24.0	24.7	25.0	23.7	1	4	1				
2010	6/20/2010	23.1	22.8	24.6	23.9	2		1				
2010	6/24/2010	23.4	23.7	24.5	23.5	2		1				
2010	8/3/2010	21.3	21.8	24.6	23.9	2	3	1				
2011	6/8/2011	25.0	23.7	24.3	24.1	2		1				
2011	6/30/2011	24.3	23.4	23.1	22.5	1		1				
2011	8/17/2011	24.5	23.3	25.0	24.7	2	3	1				
2012	6/16/2012	23.0	22.5	24.8	23.4	2		1				
2012	6/19/2012	23.9	23.3	23.6	23.5	2		1				
2012	8/5/2012	22.1	22.2	24.8	24.9	2		1				
2012	8/7/2012	24.9	24.8	24.8	24.6	2	4	1				
						49	27	26	1	Grand Total		
						2.7	1.5			Per Year		

Protocol Improvements

- Evaluate use of Hoyes Run flow data and local weather data and forecasts to improve performance
- ➤ Hoyes gage started in summer 2011; waiting for sufficient low flow days (<~150 cfs), with no discharge and steady natural flow
- ➤ Garrett County airport data available starting 2007; only 8 days from 2007-2012 when station not operating, limiting a revised protocol

August 16, 2011 River Temps

July 26, 2011 River temps

August 14, 2011 River Temps

Relevant Reports

- Temperature Simulation Model for the Deep Creek Hydroelectric Facility
- Temperature and Trout Habitat Enhancement for Operating Deep Creek Hydroelectric Station: Operating Protocol Development and Results for 1995-2008
- ➤ Annual reports since 2008 on T.E. Protocol
- Available at: pprp.info/bibliography/sec7.htm#deepcreek

